日常: 算法、数据结构、分布式系统、日常思考感悟等

[LeetCode] Design Circular Queue

2021.04.06

问题描述

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implementation the MyCircularQueue class:

  • MyCircularQueue(k) Initializes the object with the size of the queue to be k.
  • int Front() Gets the front item from the queue. If the queue is empty, return -1.
  • int Rear() Gets the last item from the queue. If the queue is empty, return -1.
  • boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
  • boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
  • boolean isEmpty() Checks whether the circular queue is empty or not.
  • boolean isFull() Checks whether the circular queue is full or not.

Example 1:

Input

[“MyCircularQueue”, “enQueue”, “enQueue”, “enQueue”, “enQueue”, “Rear”, “isFull”, “deQueue”, “enQueue”, “Rear”]

[3], [1], [2], [3], [4], [], [], [], [4], []

Output

[null, true, true, true, false, 3, true, true, true, 4]

Explanation MyCircularQueue myCircularQueue = new MyCircularQueue(3); myCircularQueue.enQueue(1); // return True myCircularQueue.enQueue(2); // return True myCircularQueue.enQueue(3); // return True myCircularQueue.enQueue(4); // return False myCircularQueue.Rear(); // return 3 myCircularQueue.isFull(); // return True myCircularQueue.deQueue(); // return True myCircularQueue.enQueue(4); // return True myCircularQueue.Rear(); // return 4

Constraints:

  • 1 <= k <= 1000
  • 0 <= value <= 1000
  • At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.

Follow up: Could you solve the problem without using the built-in queue?

问题分析

问题需要我们实现一个Ring Buffer,问题比较简单,我们在MyCircularQueue结构体内维护以下几个状态:

  1. size 表示queue的容量
  2. head 指向队列头部
  3. tail 指向队列尾部
  4. len 当前队列长度
  5. list 用于容纳元素的数组

每次进行EnQueue操作时,tail后移,为了不会越界,同时达到“环”的效果,自增后再对size取余作为tail新的值;这样就能保证当tail达到最大值时,会重新回到0 DeQueue操作同理

注意,在DeQueue操作时,我们仅仅是移动了head,实际list中原来的head指向的元素还是存在的,只不过不允许访问,可以被后续的EnQueue覆盖掉

示例代码

type MyCircularQueue struct {
	list []int
	size int
	head int
	tail int
	len  int
}

func Constructor(k int) MyCircularQueue {
	return MyCircularQueue{
		list: make([]int, k),
		size: k,
		head: 0,
		tail: -1,
		len:  0,
	}
}

func (this *MyCircularQueue) EnQueue(value int) bool {
	if this.IsFull() {
		return false
	}
	this.len++
	this.tail = (this.tail + 1) % this.size
	this.list[this.tail] = value
	return true
}

func (this *MyCircularQueue) DeQueue() bool {
	if this.IsEmpty() {
		return false
	}
	this.head = (this.head + 1) % this.size
	this.len--
	return true
}

func (this *MyCircularQueue) Front() int {
	if this.IsEmpty() {
		return -1
	}
	return this.list[this.head]
}

func (this *MyCircularQueue) Rear() int {
	if this.IsEmpty() {
		return -1
	}
	return this.list[this.tail]
}

func (this *MyCircularQueue) IsEmpty() bool {
	return this.len == 0
}

func (this *MyCircularQueue) IsFull() bool {
	return this.len == this.size
}

原题链接

Design Circular Queue

发表评论