日常: 算法、数据结构、分布式系统、日常思考感悟等

[LeetCode] Longest Increasing Subsequence

2021.07.16

题目说明

Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

Example 1:

Input: nums = [10,9,2,5,3,7,101,18]

Output: 4

Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2:

Input: nums = [0,1,0,3,2,3]

Output: 4

Example 3:

Input: nums = [7,7,7,7,7,7,7]

Output: 1

Constraints:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 10^4

Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?

题目分析

这个问题也即LIS,解决方式是维护一个dp数组,对于nums[i],找到nums[i]在dp中的lower_bound,即不小于nums[i]的第一个数的位置。如果找到了,则将dp中该元素替换为nums[i];如果未找到,说明dp数组中每一个元素都小于nums[i],此时将nums[i]添加到dp数组末尾即可。在查找lower_bound的过程中使用二分查找提高效率

注意 这个方法求解的是LIS的长度,dp中保存的不一定是最长递增子序列;比如以下例子

对于序列[2, 3, 1]

按照这个方法求解出来的dp数组,最终保存的是 [1, 3]; 明显不符合

示例代码

func lengthOfLIS(nums []int) int {
	dp := []int{nums[0]}
	for i := 1; i < len(nums); i++ {
		// find lower bound of nums[i]
		l, r := 0, len(dp)
		for l < r {
			mid := l + (r-l)/2
			if dp[mid] >= nums[i] {
				r = mid
			} else {
				l = mid + 1
			}
		}
		if r == len(dp) {
			dp = append(dp, nums[i])
		} else {
			dp[r] = nums[i]
		}
	}

	return len(dp)
}

原题链接

Longest Increasing Subsequence

发表评论