日常: 算法、数据结构、分布式系统、日常思考感悟等

[LeetCode] Partitioning Into Minimum Number Of Deci-Binary Numbers

2021.05.27

题目描述

A decimal number is called deci-binary if each of its digits is either 0 or 1 without any leading zeros. For example, 101 and 1100 are deci-binary, while 112 and 3001 are not.

Given a string n that represents a positive decimal integer, return the minimum number of positive deci-binary numbers needed so that they sum up to n.

Example 1:

Input: n = “32”

Output: 3

Explanation: 10 + 11 + 11 = 32

Example 2:

Input: n = “82734”

Output: 8

Example 3:

Input: n = “27346209830709182346”

Output: 9

Constraints:

  • 1 <= n.length <= 10^5
  • n consists of only digits.
  • n does not contain any leading zeros and represents a positive integer.

题目分析

刚看到问题时,初步想法是观察最低位是几,假设为x,那么说明至少需要x个最低位为1的数;

确定最低位后,再继续看高一位的,假设为y;如果 y <= x,那么第一步中确定的这些数,十位上设置y个1,(x-y)个0就能满足需求;如果y > x,说明至少需要y个十位上为1的数才能满足。

继续按照规则推理到最高位,我们可以发现,数字的个数跟n的位数无关,只跟n的组成数字中最大的那个数字有关;因此,我们可以写出如下求解:

示例代码

func minPartitions(n string) int {
    // 初始化为1
	ans := byte('1')
	for i := 0; i < len(n); i++ {
        // 不断迭代更新为最大的数字(byte表示的数字)
		if n[i] > ans {
			ans = n[i]
		}
	}
    // byte转int
	return int(ans - byte('0'))
}

原题链接

Partitioning Into Minimum Number Of Deci-Binary Numbers

发表评论