日常: 算法、数据结构、分布式系统、日常思考感悟等

[LeetCode] Product of Array Except Self

2021.12.09

题目描述

Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i].

The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

You must write an algorithm that runs in O(n) time and without using the division operation.

Example 1:

Input: nums = [1,2,3,4]

Output: [24,12,8,6]

Example 2:

Input: nums = [-1,1,0,-3,3]

Output: [0,0,9,0,0]

Constraints:

  • 2 <= nums.length <= 10^5
  • -30 <= nums[i] <= 30
  • The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

Follow up: Can you solve the problem in O(1) extra space complexity? (The output array does not count as extra space for space complexity analysis.)

题目分析

题目要求在O(n)时间复杂度内用O(1)的额外空间来求解,假设最终的结果数组为ans,我们不妨看以下2个元素: ans[i], ans[i+1]

对于 ans[i]而言,它等于 prefix[:i] * suffix[i+1:]

prefix[:i]表示从从nums[0]直到nums[i-1]元素的乘积

suffix[i+1:]表示从nums[i+1]直到最后一个元素的乘积

对于ans[i+1],它等于 prefix[:i+1] * suffix[i+2:]

那么,我们不妨定义2个元素,prefixProdsuffixProdprefixProd定义为前i个元素的乘积,suffixProd定义为后i个元素的乘积

接着我们遍历整个数组,将ilen(nums)-1-i看做头尾2个指针,一个计算prefixProd, 一个计算suffixProd

头指针同时负责数组元素i的前缀乘积,尾指针负责数组元素的后缀乘积

这样,我们便可以在O(n)的时间复杂度内,对所有元素完成前缀乘积与后缀乘积的相乘计算,得到最终结果

示例代码

func productExceptSelf(nums []int) []int {
    // 前缀乘积
	prefixProd := 1
    // 后缀乘积
	suffixProd := 1
	len := len(nums)
    // 结果数组
	res := make([]int, len)

    //全部初始化为1
	for i := 0; i < len; i++ {
		res[i] = 1
	}
    // 遍历原数组
	for i := 1; i < len; i++ {
        // 计算前缀乘积
		prefixProd *= nums[i-1]
        // 头指针元素乘上 前缀乘积
		res[i] *= prefixProd

        // 计算后缀乘积
		suffixProd *= nums[len-i]
        // 尾指针元素乘上 后缀乘积
		res[len-1-i] *= suffixProd
	}
	return res
}

原题链接

Product of Array Except Self

发表评论